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1. Introduction

The large-N approximation [1] seems to be the most promising approach to gain an ana-

lytical understanding of the strong coupling regime of gauge theories. This belief is due in

great part to the AdS/CFT correspondence [2], which provides a concrete example where

such an approximation works. The correspondence argues that at large ’t Hooft coupling λ,

four dimensional SU(N) N = 4 SYM theory is described by classical strings in AdS5 × S5.

Quantum effects on the world-sheet are suppressed by 1√
λ

and string loop effects by 1
N .

String states can be seen to appear from the field theory [3, 4] as long gauge invariant

operators. Since at large λ a semi-classical expansion is appropriate, a particularly impor-

tant role is played by classical string solutions [5, 6]. In certain limits these can be directly

mapped [7 – 9] to spin chains which appear also in the field theory [10] as a way to describe

a certain class of long operators.

For our purpose, some particular solutions recently proposed in [11, 12] and called

“single spike solutions” will be of interest. They were found based on previous work [13 –

15] and shown to be closely related in their properties to the giant magnon solutions

described in [15] and further analyzed in [16]–[38].

A very useful tool for understanding the giant magnon solutions is the dressing method1

of [41 – 43] which was shown in [44, 45] to provide a simple description of the magnon as

well as a method for constructing multiple magnon solutions. Superposing magnons is in

principle difficult since the problem is non-linear, and becomes possible only due to the

integrability of the equations of motion. It appears natural to ask if the dressing method

can be similarly applied to the study of spike solutions and their scattering.

1The dressing method can also be applied in the AdS sector, for example it was used in [39] to find new

solutions by dressing the solution in [40].
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In this paper we find that, indeed, the dressing method provides for a simple un-

derstanding of the single spike solutions and furthermore allows the construction of new

solutions with multiple spikes. Of particular interest are solutions describing the scattering

of two single spikes from which we can compute the scattering phase shift. This calcula-

tion is vital to gain understanding of the dynamics of two solitons in integrable systems

such as this one. We find that the phase shift agrees with the one computed for the giant

magnon [46] (up to non-logarithmic terms). This is perhaps surprising since both the time

delay and the energy for the single spike and the giant magnon are different. Only after

integrating the time delay with respect to the energy do both results agree as a function

of the dressing parameters.

Another interesting conceptual advantage of the dressing method is that the “basic”

or “naked” solution we need to dress to obtain the single spike is a string wrapped around

the equator of the sphere infinitely many times. This confirms the idea of [11] that these

solutions can be thought of as excitations over that state. Identifying this state in the field

theory has however proved difficult. Some ideas in that respect including a possible relation

to the antiferromagnetic state of a spin chain are discussed in [47, 48] and mentioned in [11].

However, in our mind the situation is not completely clear. It is quite interesting though,

since we see that the solutions we consider have a very rich integrable dynamics.

This paper is organized as follows: in section 2 we review the main ingredients of

the dressing method in the SU(2) case relevant for our purposes. In sections 3 and 4 we

discuss the scattering solutions for strings moving on two and three-spheres respectively.

In section 5 we compute the phase shift and compare to the case of the giant magnon.

Finally, we give our conclusions in section 6.

2. The dressing method

In this section we describe the basic idea of the dressing method with the main intention

of establishing the notation (which is the same as in [44]) for the rest of the paper. Param-

eterizing S3 with two complex coordinates Z1,2 such that |Z1|2 + |Z2|2 = 1, the Polyakov

action for a string moving on Rt × S3 is

S =
1

2

∫

dσdτ
[

−(∂τ t)2 + (∂σt)2 + ∂τ Z̄a∂τZa − ∂σZ̄a∂σZa − Λ
(

Z̄aZa − 1
)]

, (2.1)

where a = 1, 2. The variable Λ is a Lagrange multiplier which enforces |Z1|2 + |Z2|2 = 1.

This is supplemented by the conformal constraints, which, if we use the ansatz t = τ read

∂τ Z̄a∂τZa + ∂σZ̄a∂σZa = 1, (2.2)

∂τ Z̄a∂σZa + ∂σZ̄a∂τZa = 0. (2.3)

It turns out that if we define the SU(2) matrix

g =

(

Z1 −iZ2

−iZ̄2 Z̄1

)

, (2.4)
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then the equations of motion and the constraints can be written together in a compact

form as

∂̄
(

∂gg−1
)

+ ∂
(

∂̄gg−1
)

= 0, (2.5)

where we defined z = 1
2(σ − τ), z̄ = 1

2(σ + τ) and ∂ = ∂z, ∂̄ = ∂z̄. Eq. (2.5) can be seen as

the compatibility equation for the existence of a solution to the linear problem

i∂̄Ψ =
AΨ

1 + λ
, i∂Ψ =

BΨ

1 − λ
, (2.6)

where

A = i∂̄gg−1, B = i∂gg−1, (2.7)

and Ψ is a two by two matrix. Given g satisfying eq. (2.5) we can find Ψ satisfying eq. (2.6)

with the initial condition Ψ(λ = 0) = g. Conversely, if we have a solution Ψ(λ, z, z̄) for

given matrices A(z, z̄) and B(z, z̄) then Ψ(0) is guaranteed to satisfy eq. (2.5). Notice that

for this we need A and B independent of λ.

The basic point of the dressing method is that given a solution g, from which A, B and

Ψ can be determined, one can then find a new solution by multiplying Ψ by an appropriate

matrix χ(λ): Ψ → χΨ. Only for specific choices of χ will the product χΨ continue to

satisfy the desired eq. (2.6). In the examples we consider, the matrix χ takes the form

χ(λ) = 1 +
λ1 − λ̄1

λ − λ1
P, (2.8)

where λ1 an arbitrary complex parameter and P is a projector defined as

P =
Ψ(λ̄1)ee

†Ψ−1(λ1)

e†Ψ−1(λ1)Ψ(λ̄1)e
, (2.9)

in terms of a vector e that can be set to e = (1, 1) without loss of generality. The rationale

behind the choice (2.8) can be found in the references [44, 41 – 43] together with a more

complete explanation of the method. For us it suffices to know that, given a solution g(z, z̄)

this method then provides a one (complex) parameter family of new solutions gλ1
(z, z̄)

labeled by the complex number λ1. Successive applications of the dressing method can be

used to generate more complicated solutions depending on additional parameters λ2, λ3, . . ..

The examples in the following sections should clarify how to apply this method in practice.

3. Single spikes on S
2

In this section we consider the solutions for strings on S2 discussed in [11, 12] and demon-

strate how to generalize them to include many spikes. As a first step we rewrite the solution

from [11], which lives inside an S2 ⊂ S5, in terms of six real embedding coordinates Y i on

– 3 –
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S5 as

Y 1 =
1

2
(Z1 + Z

1
) =

√

1 − cos2 θ1 sech2 ξ

1 + cot2 θ1 tanh2 ξ
[cos x + sinx cot θ1 tanh ξ] ,

Y 2 =
1

2i
(Z1 − Z

1
) =

√

1 − cos2 θ1 sech2 ξ

1 + cot2 θ1 tanh2 ξ
[sin x − cos x cot θ1 tanh ξ] ,

Y 3 = Z2 = cos θ1 sech ξ,

Y 4 = Y 5 = Y 6 = 0, (3.1)

where θ1 is a parameter of the solution and

ξ = t sec θ1 + x tan θ1. (3.2)

Let us call the solution (3.1) ~Y1.

The simplest way to build a scattering state of this spike ~Y1 with another spike ~Y2

(which is given by the same formula as above but with a different parameter θ2) is to use

the formula [49]

~Y1,2 = ~Y0 + (~Y1 − ~Y2)
~Y0 · ~Y2 − ~Y0 · ~Y1

1 − ~Y1 · ~Y2

, (3.3)

where ~Y0 is the “vacuum” or “naked” solution, which in this context is given by

Y0 = (cos x, sin x, 0, 0, 0, 0), (3.4)

and describes the string at rest winding infinitely many times around the equator (θ0 =

π/2).

One can check directly that (3.3) satisfies the equations of motion and Virasoro con-

straints

−∂2
t
~Y + ∂2

x
~Y + (−∂t

~Y · ∂t
~Y + ∂x

~Y · ∂x
~Y )~Y = 0,

−∂t
~Y · ∂x

~Y = 0,

∂t
~Y · ∂t

~Y + ∂x
~Y · ∂x

~Y = 1, (3.5)

and of course the embedding constraint ~Y · ~Y = 1. Further application of the method

would allow us to construct solutions with more spikes but for our present purpose these

two-spike solutions are sufficient.

It is important to note that one must first switch to the (t, x) coordinates

τ = t sec θ1, σ = x sec θ1 (3.6)

before applying the relation (3.3). That is, from eq. (3.6) it is clear that the σ and τ

coordinates of the solutions ~Y1 and ~Y2 are normalized differently; they cannot be combined

using eq. (3.3) until we first switch to the common (t, x) coordinates. We now turn to

the case of single spikes on S3 where the solution has an additional angular momentum

parameter.
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4. Single spikes on S
3 and scattering solutions via dressing

As noted in the previous section, to superpose spikes it is important to rescale σ and τ so

that the relation t = κτ holds with κ = 1 for all solutions. Going to conformal gauge and

using the same ideas as in the previous case we find a solution depending on two parameters

θ1 and γ1. If we now use the parameterization

Z1 = Y1 + iY2 = sin θeiφ1, (4.1)

Z2 = Y3 + iY4 = cos θeiφ2, (4.2)

Z3 = Y5 + iY6 = 0, (4.3)

of S3 in terms of three angles (θ, φ1, φ2), the solution is

cos θ =
cos θ1

cosh ξ
, (4.4)

φ1 = σ − arctan

(

cos θ1

sin θ1
tanh ξ

)

, (4.5)

φ2 =
sin γ1

1 − cos2 γ1 sin2 θ1
(σ + τ cos γ1 sin θ1) , (4.6)

ξ =
cos θ1 cos γ1

1 − cos2 γ1 sin2 θ1
(τ + σ cos γ1 sin θ1) . (4.7)

This solution has one more conserved angular momentum and lives in an S3 ⊂ S5. Its

properties were studied in [11]. Now we show that this solution follows from the infinitely

wrapped string by using the same dressing method that in [44] was used for giant magnons.

From now on we set Z3 = 0 and consider, as mentioned, solutions on Rt × S3 where

the S3 is parameterized by Z1,2 with |Z1|2 + |Z2|2 = 1. This allows us to apply the ideas

described in section 2 directly. We start from the infinitely wrapped string solution2

Z1 = eiσ, Z2 = 0. (4.8)

The embedding into SU(2) with z = 1
2(σ − t) and z̄ = 1

2(σ + t) is given by

g =

(

ei(z+z̄) 0

0 e−i(z+z̄)

)

, (4.9)

which leads to (using the notation from [44] or section 2)

A = B =

(

−1 0

0 1

)

. (4.10)

2The giant magnon is similarly constructed from the S
3 solution Z1 = e

iτ , Z2 = 0. The full Rt × S
3

solution for the spike is however not a simple σ ↔ τ interchange of the magnon since t = τ for both the

magnon and the spike. Equivalently we can say that we interchange t = τ for t = σ. It is easy to see that,

in conformal gauge and for a metric Rt × S
3 this maps solutions into solutions. We thank A. Tseytlin for

this last comment.
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The solution of the corresponding linear problem (2.6) is

Ψ =

(

eiZ(λ) 0

0 e−iZ(λ)

)

, Z(λ) =
z

1 − λ
+

z̄

1 + λ
. (4.11)

Taking the constant vector e = (1, 1) we obtain the projection operator

P =
1

1 + e2i(Z(λ1)−Z(λ̄1))

(

1 e2iZ(λ1)

e−2iZ(λ̄1) e2i(Z(λ1)−Z(λ̄1))

)

. (4.12)

The method then gives a family of new solutions (after including a normalization factor to

maintain detΨ(λ = 0) = 1)

gλ1
= Ψλ1

(0) =

√

λ1

λ̄1

[

1 − λ1 − λ̄1

λ1
P

]

Ψ(λ = 0). (4.13)

We can now read off the coordinates Z1,2 of this solution, finding

Z1 =
eiσ

√

λ1λ̄1

λ1e
−2iZ(λ̄1) + λ̄1e

−2iZ(λ1)

e−2iZ(λ1) + e−2iZ(λ̄1)
, (4.14)

Z2 =
e−iσ

√

λ1λ̄1

i(λ̄1 − λ1)

e−2iZ(λ1) + e−2iZ(λ̄1)
. (4.15)

The energy and angular momentum can be computed as

ε = E − T∆φ =

√
λ

2π

∫ +∞

−∞
dσ (1 − ∂σIm [log Z1]) , (4.16)

Ji =

√
λ

2π

∫ +∞

−∞
dσ Im

[

Z̄i∂tZi

]

, i = 1, 2 (4.17)

where λ is the ’t Hooft coupling. The energy itself E =
√

λ
2π

∫∞
−∞ dσ is infinite but the

excitation energy ε above the infinitely wrapped string “vacuum” is finite.3 Henceforth we

will usually refer to ε as the energy of the solution.

Substituting (4.14) into (4.16) and choosing to parameterize λ1 via

λ1 = reip/2, (4.18)

where 0 < r < ∞, −π < p
2 < π, we obtain

ε =

√
λ

π

[π

2
−
∣

∣

∣

∣

∣

∣

p

2

∣

∣

∣
− π

2

∣

∣

∣

]

=











√
λ

π

∣

∣

p
2

∣

∣ , if
∣

∣

p
2

∣

∣ < π
2

√
λ

π

(

π −
∣

∣

p
2

∣

∣

)

, if
∣

∣

p
2

∣

∣ > π
2

(4.19)

which is plotted in figure 1 for convenience. Notice that the energy is always positive.

3This has some similarity with the situation discussed in [50].
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Figure 1: Excitation energy of the single spike solution as a function of the parameter p

2
.

Similarly, equations (4.17), (4.14), and (4.15) lead to

J1 = sign (sin p)

√
λ

i4π

[(

λ1 −
1

λ1

)

−
(

λ̄1 −
1

λ̄1

)]

= sign (sin p)

√
λ

π

1 + r2

2r
sin

p

2
, (4.20)

J2 = sign (sin p)

√
λ

i4π

[(

λ1 +
1

λ1

)

−
(

λ̄1 +
1

λ̄1

)]

= sign (sin p)

√
λ

π

r2 − 1

2r
sin

p

2
. (4.21)

Upon eliminating r in the above equations we find that the two angular momenta are

related by

J1 =

√

J2
2 +

λ

π2
sin2 p

2
, (4.22)

One can check that equations (4.19) and (4.22) agree with the expressions obtained in [11]

for the single spike solution when we identify the parameter θ̄ there with p/2 = θ̄. In [11]

only the case 0 < θ̄ < π
2 was considered, whereas here we can take −π < θ̄ < π. Extending

the range of θ̄ includes solutions which are related by reflections to the solutions in the

0 < θ̄ < π
2 range and therefore are not truly independent (they are just spikes moving in

the opposite direction). Shortly we will superpose solutions and it will be important to

consider single spikes in the full range −π < θ̄ < π.

As a reminder, in terms of the same dressing parameter λ1 = rei p

2 , for the giant

magnon solution of [15], the energy and angular momentum are given by (see [44]),

E(mag) =

√
λ

i4π
sign(sin

p

2
)

[(

λ1 −
1

λ1

)

−
(

λ̄1 −
1

λ̄1

)]

=

√
λ

π

1 + r2

2r

∣

∣

∣
sin

p

2

∣

∣

∣
, (4.23)

J
(mag)
2 = −

√
λ

i4π
sign(sin

p

2
)

[(

λ1 +
1

λ1

)

−
(

λ̄1 +
1

λ̄1

)]

=

√
λ

π

1 − r2

2r

∣

∣

∣
sin

p

2

∣

∣

∣
. (4.24)

Eliminating r in these equations leads to the relation

E(mag) =

√

{J (mag)
2 }2 +

λ

π2
sin2 p

2
. (4.25)
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Going back to the spike solution and repeating the dressing method again, from a

single two-charge soliton we obtain a two spike solution

Z1 =
eiσ

2|λ1λ2|
R + |λ1|2λ11̄λ22̄e

+i(v1−v2) + |λ2|2λ11̄λ22̄e
−i(v1−v2)

λ12λ1̄2̄ cosh(u1 + u2) + λ12̄λ1̄2 cosh(u1 − u2) + λ11̄λ22̄ cos(v1 − v2)
,

(4.26)

Z2 =
−i

2|λ1λ2|
λ11̄e

iv1

[

λ12λ1̄2λ̄2e
+u2 + λ1̄2̄λ12̄λ2e

−u2

]

+ (1 ↔ 2)

λ12λ1̄2̄ cosh(u1 + u2) + λ12̄λ1̄2 cosh(u1 − u2) + λ11̄λ22̄ cos(v1 − v2)
,

(4.27)

where

R = λ12λ1̄2̄

[

λ1λ2e
+u1+u2 + λ̄1λ̄2e

−u1−u2

]

+ λ1̄2λ12̄

[

λ1λ̄2e
+u1−u2 + λ̄1λ2e

−u1+u2

]

, (4.28)

and

ui = i(Z(λi) − Z(λ̄i)),

vi = Z(λi) + Z(λ̄i) − σ, i = 1, 2. (4.29)

The following shorthand notation has been used:

λ12 = λ1 − λ2, λ12̄ = λ1 − λ̄2, etc. (4.30)

Substituting λi = rie
ipi/2, we can express |Z2| as a function of t and σ. To gain some

understanding of the solution we plot |Z2| as a function of σ for different values of t = τ

in figure 2. At an early time the spikes are far apart. However they come close, eventually

scattering and separating from each other. At late times, the profile again describes two

separated solitons, the only evidence of the scattering being that their positions are shifted

with respect to what they would be if they had moved past each other with constant

velocity. Numerically we can compute the shift and from there the time delay, namely the

difference between the time at which the soliton arrives to a given point and the time at

which it would have arrived if it had not met the other soliton in the way. This serves

to illustrate the analytical calculations we perform in the next section and the numerical

results also provide a useful check. As a final point, since when t → −∞ the solitons are

far apart, the energy and angular momenta of the solution is simply the sum of the ones

for each soliton separately.

5. Scattering phase shift

To compute the time delay, we first consider a single soliton as given by eq. (4.15). Using

this together with eq. (4.29), we obtain,

|Z2| ∝
1

cosh u1
. (5.1)

This shows that the position of the soliton, namely, the maximum of |Z2|, is determined by

equating u1 = 0. In particular this implies that the soliton moves with constant velocity

Vi =
1 + λiλ̄i

λi + λ̄i
=

1 + r2
i

2ri cos pi

2

, i = 1, 2. (5.2)

– 8 –
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0.6

0.8

ÈZ2È

Figure 2: |Z2| as a function of σ with the choice of parameters r1 = 0.24, p1 = 2.0, r2 = 0.50,

and p2 = 4.1 at t = −20, 0, 20, from top to bottom, respectively. The line at σ = 87 is the

expected final location of the first soliton had it not encountered the second soliton. The velocity

and distance shift of the first soliton are, V1 = 4.08 and δσ1 = 10.7, respectively, which agree with

the analytic result given in the text.

We can make this explicit by writing

ui =
i(λ2

i − λ̄2
i )

∣

∣1 − λ2
i

∣

∣

2 (σ − Vit), i = 1, 2. (5.3)
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Now we compute the time delay that particle 1 experiences as it goes through the other

particle assuming particle 1 starts from the left. They can be moving toward each other

(V2 < 0 < V1) or in the same direction (0 < V2 < V1). To find the distance shift that

particle 1 experiences, we first compute the location of the particle when σ, t → −∞. We

can obtain the location by computing the extremum of eq. (4.27) with respect to u1 and

then equate the result with eq. (5.3) in this limit. The initial location of particle one at

t = −t0 is,

σi(t = −t0) = σ1(σ, t → −∞) = −V1t0 + sign (sin p2)
i
∣

∣1 − λ̄2
1

∣

∣

2

2(λ2
1 − λ̄2

1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

. (5.4)

Similarly at the other limit, we obtain the final location of the particle at t = +t0,

σf (t = +t0) = σ1(σ, t → +∞) = V1t0 − sign (sin p2)
i
∣

∣1 − λ̄2
1

∣

∣

2

2(λ2
1 − λ̄2

1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

, (5.5)

whereas the expected location of particle 1 in the limit, from eq. (5.4), is

σexp = σi(t = −t0) + 2V1t0 = V1t0 + sign (sin p2)
i
∣

∣1 − λ̄2
1

∣

∣

2

2(λ2
1 − λ̄2

1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

. (5.6)

Thus, the distance shift that particle 1 experiences as it goes through the other particle

starting from the left is

δσ1 = σexp − σf (5.7)

= sign (sin p2)
i(1 − λ2

1)(1 − λ̄2
1)

(λ2
1 − λ̄2

1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

(5.8)

= sign (sin p2)
1 + r4

1 − 2r2
1 cos p1

2r2
1 sin p1

log

[

r2
1 + r2

2 − 2r1r2 cos p1−p2

2

r2
1 + r2

2 − 2r1r2 cos p1+p2

2

]

. (5.9)

Finally, the time delay for particle 1 becomes

∆T1 =
δσ1

V1
= sign (sin p2)

i(1 − λ2
1)(1 − λ̄2

1)

(λ1 − λ̄1)(1 + λ1λ̄1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

= sign (sin p2)
1 + r4

1 − 2r2
1 cos p1

2r1(1 + r2
1) sin p1

2

log

[

r2
1 + r2

2 − 2r1r2 cos p1−p2

2

r2
1 + r2

2 − 2r1r2 cos p1+p2

2

]

. (5.10)

For comparison, the velocity, position shift and time delay for the scattering of giant

magnons are

V
(mag)
i =

λi + λ̄i

1 + λiλ̄i
=

2ri cos pi

2

1 + r2
i

, (5.11)

δσ
(mag)
1 = sign

(

sin
p2

2

)

i
(1 − λ2

1)(1 − λ̄2
1)

(λ1 − λ̄1)(1 + λ1λ̄1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

= sign

(

sin
p2

2

)

1 + r4
1 − 2r2

1 cos p1

2r1(1 + r2
1) sin p1

2

log

[

r2
1 + r2

2 − 2r1r2 cos p1−p2

2

r2
1 + r2

2 − 2r1r2 cos p1+p2

2

]

, (5.12)
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∆T
(mag)
1 = sign

(

sin
p2

2

)

i
(1 − λ2

1)(1 − λ̄2
1)

(λ2
1 − λ̄2

1)
log

[

λ12λ1̄2̄

λ12̄λ1̄2

]

(5.13)

= sign

(

sin
p2

2

)

1 + r4
1 − 2r2

1 cos p1

2r2
1 sin p1

log

[

r2
1 + r2

2 − 2r1r2 cos p1−p2

2

r2
1 + r2

2 − 2r1r2 cos p1+p2

2

]

. (5.14)

Note that the distance shift and time delay are interchanged compared to those of the

spikes.

We can now compute the phase shift with the formula
(

∂δ1

∂ε1

)

J2

= ∆T1, (5.15)

where the angular momentum, J2 must be fixed when the above equation is integrated. It

is easy to check that the integral is given by the same function Θ that appears in the giant

magnon calculation of [46]

Θ
(

λ1, λ̄1, λ2, λ̄2

)

=

√
λ

2π

[

K (λ1, λ2) + K
(

λ̄1, λ̄2

)

− K
(

λ1, λ̄2

)

− K
(

λ̄1, λ2

)]

, (5.16)

where the function K is given by

K (X,Y ) =

[(

X +
1

X

)

−
(

Y +
1

Y

)]

log(X − Y ). (5.17)

Indeed, using eqs. (4.19), (4.20) and (4.21) we can compute

(

∂λ1

∂ε1

)

J2

= sign (sin p1)
2π√

λ

iλ2
1(1 − λ̄2

1)

(λ1 − λ̄1)(1 + λ1λ̄1)
,

(

∂λ̄1

∂ε1

)

J2

=

(

∂λ1

∂ε1

)

J2

, (5.18)

and then use them to differentiate Θ in eq. (5.16) with respect to ε1. We obtain,

(

∂Θ

∂ε1

)

J2

= −sign(sin p1 sin p2)∆T1 + sign (sin p1)
i(λ2 − λ̄2)

λ2λ̄2
(5.19)

= −sign(sin p1 sin p2)
∂δ1

∂ε1
− sign(sin p1 sin p2)

2π√
λ

(

J
(2)
1 − J

(2)
2

)

, (5.20)

where J
(2)
1 and J

(2)
2 are the angular momenta of the second soliton.

The phase shift that particle 1 experiences as it goes through particle 2 is then,

δ1 = −sign(sin p1 sin p2)Θ
(

λ1, λ̄1, λ2, λ̄2

)

+ sign (sin p2)
i(λ2 − λ̄2)

λ2λ̄2
ε1 (5.21)

= −sign(sin p1 sin p2)Θ
(

λ1, λ̄1, λ2, λ̄2

)

− 2π√
λ

(

J
(2)
1 − J

(2)
2

)

ε1. (5.22)

The phase shift for the giant magnon is known from [46] to be,

δ
(mag)
1 = −sign(sin

p1

2
sin

p2

2
)Θ
(

λ1, λ̄1, λ2, λ̄2

)

−
(

ε2 + J
(mag,2)
2

)

p1. (5.23)

Remarkably we see a perfect parallel between the two results, despite the fact that inter-

mediate steps are different. Ignoring a possible sign, the phase shift is the same up to
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non-logarithmic terms. The non-logarithmic terms are in any case non-universal. For the

scattering of giant magnons [15] such terms were absorbed by redefining the coordinate

σ in agreement with the expectations from the spin chain side. Here we do not clearly

know the spin chain description of the system so we do not have any guide about how to

treat the non-logarithmic terms. We leave this point for future understanding when the

dual spin chain system is better known. A clue in this respect is that the giant magnon

phase appears as the strong-coupling limit of the scattering phase proposed in [51] from

field theory considerations. Presumably, since the phase for scattering of single spikes is

the same as for giant magnons, the AFS phase also plays a role in understanding these new

solutions.

6. Conclusions

In this paper we have shown that the recently studied single spike solutions follow very

simply as excitations of the string wrapped around the equator by applying the dressing

method. This allows us to find more generic solutions where the profile of the string is not

rigid. In particular, we found a solution describing the scattering of two spikes and calcu-

lated the corresponding phase shift. Perhaps surprisingly the result is the same as for the

giant magnon when written in terms of the dressing parameters, even though intermediate

steps in the calculation were quite different. This shows that the same integrable structure

lies behind both and should perhaps give a clue to the spin chain description of the single

spike solutions which is still missing.
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